Telluride Ligands

DOI: 10.1002/anie.200806022

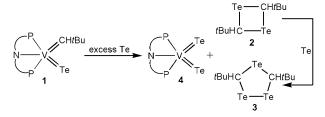
Tellus in, Tellus out: The Chemistry of the Vanadium Bis(telluride) Functionality**

Uriah J. Kilgore, Jonathan A. Karty, Maren Pink, Xinfeng Gao, and Daniel J. Mindiola*

Terminal telluride ligands bound to transition metals still represent a rare functionality, $^{[1-8]}$ the first example (*trans*-[(Me₃P)₄W(Te)₂]) being reported by Rabinovich and Parkin in 1991. A terminal telluride on a 3d transition metal, namely the complex [{(Me₃SiCH₂CH₂)₃N}V=Te] was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later reported by Schrock and Co-workers in 1994. Per leg was later

Therefore it is of no surprise that little is known about the reactivity of the M=Te functionality in question, especially when 3d transition metals are involved. [2,8] For the few 3d examples known, [2,8] it has been proposed that the M=Te linkage decomposes by reductive elimination of Te⁰, whereby the fate of the reduced metal complex M^{2-} can sometimes result in formation of dinuclear species. [9,10] Only in the case of $[(\eta^4\text{-Me_8taa})M'=\text{Te}]$ or $[\text{Cp}_2^*\text{M}=\text{Te}(\text{NC}_3\text{H}_5)]$, could the terminal Te²⁻ ligand be replaced with O^{2-} (derived from O_2 or N_2O), Se_2^{2-} (derived from elemental Se), and 2 Cl⁻ from the addition of two equivalents of Me₃SiCl. [7,8] Although not discussed, it can be argued that these transformations proceed by oxidation of the M=Te bond with concurrent Te⁰ ejection.

Based on the chemistry known for terminal tellurides, we hypothesized that the M^n =Te functionality could be utilized as a labile group by the reductive elimination of the low-valent M^{n-2} fragment with concurrent extrusion of Te^0 . This feature is counterintuitive when considering the reactivity of the ubiquitous oxo ligand, given its propensity to stabilize high-valent oxidation states, and would imply that the metal center that has a terminal Te atom should be amenable to substitution and/or redox processes. Herein, we demonstrate that a vanadium alkylidene/telluride complex, [(PNP)V=


[*] U. J. Kilgore, Dr. J. A. Karty, Dr. M. Pink, X. Gao, Prof. Dr. D. J. Mindiola Department of Chemistry and the Molecular Structure Center, Indiana University Bloomington, IN 47405 (USA)

Fax: (+1) 812-855-8300 E-mail: mindiola@indiana.edu

[**] We thank the NSF (CHE-0348941) and the Sloan and the Dreyfus Foundations for financial support of this research. CI and MALDI mass spectra were recorded with the assistance of Angela Hansen. The MAT-95XP was purchased with funds from NIH grant 1S10RR016657-01 and the Bruker Biflex III MALDI-TOF was purchased with funds from NSF grant 9970211.

CHtBu(Te)] (1) (PNP $^-$ = N(2-PiPr $_2$ -4-methylphenyl) $_2$),^[11] prepared from [(PNP)V(CH $_2$ tBu) $_2$] and Te 0 via the intermediate [(PNP)V=CHtBu] (**A**), can reductively eliminate a telluroaldehyde fragment to afford the formation of 2,4-di*tert*-butyl-1,3-ditelluretane (**2**) and/or 3,5-di*-tert*-butyl-1,2,4-tritellurolane (**3**; Scheme 1). The hypothetical "(PNP)V" fragment can be trapped with excess Te 0 to afford the first 3d

Scheme 1. Synthesis of complex 2, and the di- and tritelluroles.

transition metal/bis(telluride) complex (PNP)V(Te)₂ (**4**). [1.5,6] Through a series of reactivity studies we demonstrated the $[Te=V^V=Te]$ moiety in **4** to be a synthon of the $[Te=V^V=X]$ and $[X=V^V=X]$ scaffolds, which are formed by oxidation of the V=Te bonds with concomitant deposition of Te^0 . In addition, we also show the ability of **4** to reductively eliminate one Te ligand to furnish a vanadium(III) complex that contains a terminal telluride moiety.

We recently reported that the complex $(PNP)V(CH_2tBu)_2$ could be oxidized by chalcogen sources to promote αhydrogen abstraction and ultimately form the alkylidene chalcogenides (PNP)V=CHtBu(X) (X = O, S, Se, and Te) and CH₃tBu.^[11] Complex **1** is remarkably stable in the solid state and in solution, but it was noted that the presence of traces of Te⁰ promoted gradual transformation of **1** into another vanadium species together with cyclic ditelluretane $[(\text{TeCH}t\text{Bu})_2]$ (2) and tritellurolane $[\text{Te}(\text{TeCH}t\text{Bu})_2]$ (3). [12] Optimization of the reaction to yield these new products involved treatment of [(PNP)V(CH₂tBu)₂] with an excess of Te powder (4-8 equivalents) under a static vacuum over 4 days at 90°C; this procedure consistently yielded the darkgreen insoluble vanadium complex together with the byproducts 2 and 3 (Scheme 1). Evacuation of the solution was necessary in order to avoid activation of atmospheric nitrogen, which results in the formation of the known dinitrogenbridged vanadium dimer $[\{(PNP)V=CHtBu\}_2(\mu_2;\eta^1,\eta^1-\eta^2)]$ N_2)].[11a] The reaction mixture was vacuum dried and the organotellurium complexes 2 and 3 were extracted by washing the solids with hexanes or pentane. The identities of compounds 2 and 3 have been confirmed by a combination of ¹H and ¹³C NMR spectra and chemical ionization (CI) mass

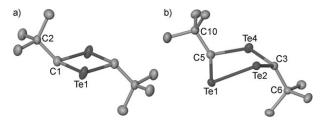


Figure 1. The molecular structures of compounds 2 (a) and 3 (b) showing thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

spectrometry. Given the rarity of ditelluretane^[13] and tritellurolane^[14a] derivatives in general, we collected single-crystal X-ray diffraction structures of each compound. [12] Figure 1 shows the head-to-tail isomers of the four- and five-membered rings $2^{[15]}$ and 3, $^{[16]}$ respectively. While the structure of 2reveals a planar four-membered ring residing on an inversion center, compound 3 incorporates a puckered five-membered ring with a Te1-Te2 distance of 2.7190(3) Å.[17] It was also determined that lower concentrations of Te (ca. 4-5 equivalents) with [(PNP)V(CH2tBu)2] greatly enhanced the yields of 2, while 6-8 equivalents of the chalcogen facilitated formation of 3. Previous work has speculated that the analogous 1,2,4-triselenolane formation derives from the insertion of Se⁰ into 1,3-diselenetane.^[14b] In our case, treatment of the reaction mixture containing 2 and 3 (after removal of the green vanadium-containing precipitate) with Te⁰ increased the concentration of 3, thus supporting the original hypothesis that precursors such as 2 can ring expand by the uptake of elemental chalcogen. A handful of ditelluretanes that originate from transient telluroketones or perfluorinated telluracarbonyl compounds exist; however, to the best of our knowledge, the ditelluretane 2 is the first example of an isolated ditelluretane that originates from a transient telluroaldehyde [Te=CHtBu] monomer.[13,14]

The insoluble green material that resulted from the reaction of 1 with an excess of Te⁰ (see above) was extracted with THF, filtered, and dried under reduced pressure to afford a green powder, which was collected in 74 % yield. The ¹H, ³¹P $(\delta = 142 \text{ ppm})$, and ⁵¹V $(\delta = 2293 \text{ ppm}, \text{ triplet}, \Delta v_{1/2} = 490,$ 299, 460 Hz) NMR spectra of the insoluble green material were consistent with a C_2 -symmetric "{(PNP) V^V }" scaffold. As expected from the inverse electronegativity dependence of high-valent vanadium complexes, the 51 V resonance of this new vanadium product is significantly downfield from that of complex 1 ($\delta = 1249$ ppm, $\Delta v_{1/2} = 864$ Hz).^[18] Unfortunately, the low solubility of this material in haloarenes and THF (unstable in CHCl₃ and CH₂Cl₂) prevented us from observing a ¹²⁵Te NMR spectroscopic signal. Crystals suitable for X-ray diffraction could be grown from solution of THF that was heated at reflux, the data confirmed formation of an unprecedented vanadium-bis(telluride) monomeric complex $[(PNP)V(Te)_2]$ (4, Figure 2). ^[19] The terminal nature of the V= Te bond is clearly manifested by the short bond lengths of 2.4225(5) and 2.4223(4) Å, which are comparable to the only other crystallographically characterized terminal vanadiumtelluride complex $[(\eta^4-Me_8taa)V=Te]$ (2.433(1) 2.435(1) Å based on two crystallographically independent

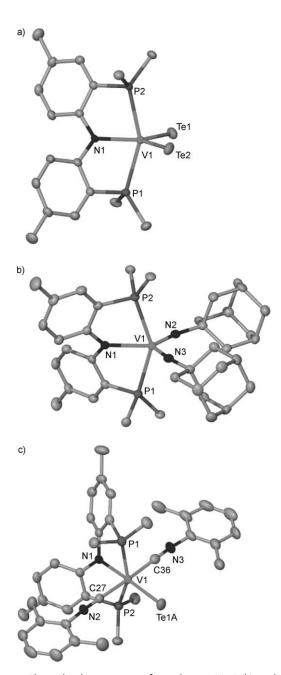


Figure 2. The molecular structures of complexes 4 (a), 5 (b), and 8 (c) with thermal ellipsoids at the 50% probability level. iPr methyl groups on P, solvent, and hydrogen atoms have been excluded for clarity.

molecules).^[7] In addition, the intramolecular Te···Te distance in **4** is too long (4.0190(3) Å) for a η^2 -Te₂²-type ligand bound to a vanadium(III) center. Some intermolecular distances of 4.0190(3) Å between Te atoms are observed in the X-ray crystal structure of **4**. The gross geometry about the metal center in **4** closely resembles other Group 5 complexes that have the same ancillary ligand PNP but contain bisalkylidene moieties composed of CH₂,^[20] CHtBu,^[21] and CHSiMe₃.^[21] It was independently found that complex **4** could be prepared from a one-pot reaction of [(PNP)VCl₂]^[11] with excess Mg and excess Te powder, albeit not in analytically pure form.^[12]

Communications

Although complex 4 appears to be resistant to thermal decomposition, the choice of reactant can result in the clean substitution of one or two Te ligands. Accordingly, treatment of 4 with two equivalents of N_3 Ad (Ad=1-adamantyl) immediately results in excision of N₂ with concomitant formation of the complex [(PNP)V(NAd)₂] (5) as yellow crystals in 41 % yield (Scheme 2). The X-ray crystal structure of 5 confirms the existence of a five-coordinate vanadium(V) bisimide complex, which is clearly indicated by the linear V-N-C 159.3(2) and 164.5(2)°) angles and short V=N bond lengths of 1.703(3) and 1.696(3) Å (Figure 2).[22] The V=N metrical parameters are comparable to the few documented monomeric vanadium complexes that have two terminal imide ligands.^[23] Likewise, treatment of 4 with N₂CPh₂ also promotes release of two equivalents of Te by forming the bis(diphenylmethylene hydrazido) complex [(PNP)V-(N₂CPh₂)₂] (6; Scheme 2). Complex 6 was characterized by a combination of multinuclear NMR spectroscopy (¹H, ¹³C, ³¹P, and ⁵¹V) and CI mass spectrometry. [12] Much like complex 5, room-temperature NMR spectroscopic studies of 6 are indicative of a C_2 -symmetric system. The CI mass spectrum provides further evidence for the proposed structure, whereby N₂ has not been released, with a peak corresponding to the molecular ion at m/z 867.3718.^[12]

Treatment of **4** with one equivalent of N_3SiMe_3 resulted in the substitution of one telluride ligand by the trimethysilylimide group to form [(PNP)V=NSiMe₃(Te)] (**7**) in 32 % yield (Scheme 2).^[12] The addition of excess azide does not promote

Scheme 2. Synthesis of complexes 5-8 from reductive elimination of Te in 4.

elimination of a second equivalent of Te, even under forcing conditions (80 °C, 12 h). The formation of compound **7** was confirmed by multinuclear NMR spectroscopy (1 H, 13 C, 31 P, and 51 V) and CI MS and, unlike **5** or **6**, the 1 H and 13 C NMR spectra are consistent with a C_{1} -symmetric molecule because of the substitution of only one Te ligand, coupled with the skewing of the aryl moieties in the PNP ligand. The CI mass spectrum of **7** is also consistent with its structure, and shows the molecular ion peak at m/z 696.1624 as well as a distinctive isotopic mass distribution that arises from the telluride ligand. [12]

Complex 4 fails to react with a variety of reagents, apart from oxidants, such as $P(SiMe_3)_3$, OCNAr (Ar=2,6-Me₂C₆H₃), B₂Pin₂ (Pin=pinacol), benzophenone, 2,3-dimethylbutadiene, and diphenylacetylene. However, treatment of 4 with two equivalents of isonitrile CNAr results in the immediate ejection of metallic Te and the simultaneous

formation of the first VIII terminal telluride complex [(PNP)V=Te(CNAr)₂] (8) as a dichroic (purple-green) material isolated in 50% yield. The NMR spectra of 8 are in agreement with a diamagnetic vanadium telluride species (^{51}V NMR: $\delta = 2019$ ppm, $\Delta \nu_{1/2} = 1581$ Hz; ¹²⁵Te NMR: very broad signal at $\delta = 3966$ ppm), while the IR spectrum of 8 clearly displays two strong $v_{\rm CN}$ signals (2022 and 2002 cm⁻¹) for the bound isocyanides, which are red-shifted from the $\nu_{\rm CN}$ signal of free isocyanide (2116 cm⁻¹). The X-ray crystal structure of 8^[24] predicates a pseudo octahedral V^{III} species (P1-V1-P2 152.58(5)°; N1-V1-Te1A 177.72(10)°; C36-V1-C27 177.23(19)°), which results from one Te²⁻ ligand in precursor 4 being substituted by two neutral isocyanides, presumably by virtue of a reductive elimination step (Figure 2). The most notable feature in the structure of 8 is the V=Te distance of 2.4603(9) Å, which is consistent with that of a terminal chalcogenide ligand. [2] In marked contrast, Parkin and Rabinovich have observed isocyanide-induced reductive coupling of two telluride ligands to form an η^2 ditellurido ligand.^[5,6]

The present work illustrates how the chemistry of the alkylidene and telluride functionalities can ultimately afford rare examples of ditelluretane and tritellurolane, as well as the first vanadium-bis(telluride) complex 4. Ditelluretanes are exceedingly rare, and our work clearly establishes a method of C=Te bond formation and subsequent dimerization of a transient telluroaldehyde [Te=CHtBu], as well as dimerization/Te insertion chemistry to form a ring-expanded tritellurolane. We also demonstrate that one or both telluride ligands in precursor 4 can be readily substituted with oxidants such as azides and diphenyldiazomethane. Likewise, reductive elimination of Te⁰ can be instigated with isonitriles to afford a rare example of a vanadium(III)-telluride complex. Therefore, our work has established that terminal telluride ligands have the ability to mask high- or low-valent vanadium fragments, presumably because of the weak bond dissociation enthalpy predicted for Te and 3d early-transition metals.^[9]

Received: December 10, 2008 Published online: February 19, 2009

Keywords: alkylidenes · chalcogens · N,P ligands · oxidation · tellurium

^[1] D. Rabinovich, G. Parkin, J. Am. Chem. Soc. 1991, 113, 9421.

^[2] C. C. Cummins, R. R. Schrock, W. M. Davis, *Inorg. Chem.* 1994, 33, 1448.

^[3] V. Christou, J. Arnold, J. Am. Chem. Soc. 1992, 114, 6240.

^[4] U. Siemeling, V. C. Gibson, J. Chem. Soc. Chem. Commun. 1992, 1670.

^[5] D. Rabinovich, G. Parkin, J. Am. Chem. Soc. 1993, 115, 9822.

^[6] D. Rabinovich, G. Parkin, Inorg. Chem. 1995, 34, 6341.

^[7] J. L. Kisko, T. Hascall, G. Parkin, J. Am. Chem. Soc. 1997, 119, 7609.

^[8] a) W. A. Howard, T. M. Trnka, M. Waters, G. Parkin, J. Organomet. Chem. 1997, 528, 95; b) W. A. Howard, G. Parkin, J. Organomet. Chem. 1994, 472, c1.

 ^[9] Theoretical studies predict the weak and thermodynamically unstable Ti=Te bond (61.8 kcal mol⁻¹) to be prone to loss of Te⁰,

- see J. M. Fischer, W. E. Piers, T. Ziegler, L. R. MacGillivray, M. J. Zaworotko, *Chem. Eur. J.* **1996**, *2*, 1221.
- [10] J. M. Fischer, W. E. Piers, L. R. MacGillivray, M. J. Zaworotko, *Inorg. Chem.* **1995**, *34*, 2499.
- [11] a) U. J. Kilgore, C. A. Sengelaub, M. Pink, A. R. Fout, D. J. Mindiola, *Angew. Chem.* 2008, 120, 3829; *Angew. Chem. Int. Ed.* 2008, 47, 3769; b) U. J. Kilgore, C. A. Sengelaub, H. Fan, J. Tomaszewski, M. Pink, J. A. Karty, M.-H. Baik, D. J. Mindiola, *Organometallics* 2009, 28, 843.
- [12] See the Supporting Information for details.
- [13] a) J. Beck, A. Haas, W. Herrendorf, H. Heuduk, J. Chem. Soc. Dalton Trans. 1996, 4463; b) M. Baum, J. Beck, A. Haas, W. Herrendorf, C. Monse, J. Chem. Soc. Dalton Trans. 2000, 11; c) B. Solouki, H. Bock, A. Haas, M. Baum, C. Monse, Z. Havlas, Z. Anorg. Allg. Chem. 1999, 625, 1726; d) M. Minoura, T. Kawashima, R. Okazaki, Tetrahedron Lett. 1997, 38, 2501; e) T. G. Back, B. P. Dyck, M. Parvez, J. Org. Chem. 1995, 60, 4657; f) For an example of a telluroaldehyde trapped by dienes, see: M. Segi, T. Koyama, Y. Takata, T. Nakajima, S. Suga, J. Am. Chem. Soc. 1989, 111, 8749.
- [14] a) M. V. Lakshmikantham, M. P. Cava, M. Albeck, L. Engman, P. Carroll, J. Bergman, F. Wudl, *Tetrahedron Lett.* **1981**, 22, 4199; b) K. Okuma, T. Kubota, *Tetrahedron Lett.* **2001**, 42, 3881.
- [15] Crystal data for **2**: $C_{10}H_{20}Te_2$, $M_{\tau}=395.46$, triclinic, $P\bar{1}$, a=6.0203(6) Å, b=6.1490(6) Å, c=9.5745(9) Å, $\alpha=101.704(2)^\circ$, $\beta=90.800(2)^\circ$, $\gamma=113.446(2)^\circ$, V=316.64(5) Å, Z=1, $\rho_{\rm calcd}=2.074$ Mg m⁻³, Z=1, Z=150(2) K, Z=150(2) C, Z=15
- [16] Crystal data for **3**: $C_{10}H_{20}Te_3$, M=523.06, monoclinic, P21/n, a=12.7214(7) Å, b=5.9309(3) Å, c=19.0338(11) Å, $\beta=96.5310(10)^\circ$, V=1426.77(13) Å³, Z=4, $\rho_{\rm calcd}=2.435$ Mg m⁻³, T=150(2) K, $Mo_{\rm K\alpha}=0.71073$ Å, absorption coefficient 6.058 mm⁻¹, F(000)=944, 24037 reflections collected, 3230 independent reflections, $R_{\rm int}=0.0195$, GoF=1.074, R=0.0147 $[I>2\sigma(I)]$, wR2=0.0319 $[I>2\sigma(I)]$.

- [17] A search of the Cambridge Structural Database on 10/27/08 using Conquest 1.10 suggests an average Te-Te bond length of approximately 2.7 Å for molecules containing C-Te-Te-C moieties.
- [18] D. Rehder, Coord. Chem. Rev. 2008, 252, 2209.
- [19] Crystal data for **4**: $C_{26}H_{40}NP_2Te_2V$, M_r = 734.67, monoclinic, P21/c, a = 7.2758(4) Å, b = 14.7745(10) Å, c = 27.0582(18) Å, β = 95.3410(10)°, V = 2896.0(3) ų, Z = 4, ρ_{calcd} = 1.685 Mg m $^{-3}$, T = 150(2) K, $Mo_{K\alpha}$ = 0.71073 Å, absorption coefficient 2.442 mm $^{-1}$, F(000) = 1440, 33700 reflections collected, 8801 independent reflections, R_{int} = 0.0337, GoF = 1.013, R = 0.0293 $[I > 2\sigma(I)]$, wR2 = 0.0609 $[I > 2\sigma(I)]$.
- [20] L. C. H. Gerber, L. A. Watson, S. Parkin, W. Weng, B. M. Foxman, O. V. Ozerov, Organometallics 2007, 26, 4866.
- [21] U. J. Kilgore, J. Tomaszewski, H. Fan, J. C. Huffman, D. J. Mindiola, Organometallics 2007, 26, 6132.
- [22] Crystal data for **5**: $C_{46}H_{70}N_3P_2V \cdot C_6H_{12} \cdot 0.5C_6 H_{14}$, $M_r = 905.17$, monoclinic, P21/c, a = 12.6324(13) Å, b = 36.310(4) Å, c = 11.6032(13) Å, $\beta = 101.219(2)^\circ$, V = 5220.4(10) Å³, Z = 4, $\rho_{calcd} = 1.152 \text{ Mg m}^{-3}$, T = 123(2) K, $Mo_{K\alpha} = 0.71073$ Å, absorption coefficient 0.289 mm^{-1} , F(000) = 1972, 63610 reflections collected, 9229 independent reflections, $R_{int} = 0.0611$, GoF = 1.039, R = 0.0479 $[I > 2\sigma(I)]$, wR2 = 0.0988 $[I > 2\sigma(I)]$.
- [23] Few examples of vanadium bis(imide) complexes (transient or stable entities) have been reported; a) F. Preuss, H. Becker, T. Wieland, Z. Naturforsch. B 1990, 45, 191; b) J. De With, A. D. Horton, A. G. Orpen, Organometallics 1993, 12, 1493; c) J. de With, A. D. Horton, Angew. Chem. 1993, 105, 958; Angew. Chem. Int. Ed. Engl. 1993, 32, 903; d) Y.-C. Tsai, P.-Y. Wang, K.-M. Lin, S.-A. Chen, J.-M. Chen, Chem. Commun. 2008, 205.
- [24] Crystal data for **8**: $C_{44}H_{58}N_3P_2Te_{1.09}V$, M_r =880.58, monoclinic, P21/c, a=12.439(3) Å, b=18.092(4) Å, c=20.004(4) Å, β =106.380(4)°, V=4319.2(17) ų, Z=4, ρ_{calcd} =1.354 Mg m³, T=150(2) K, $Mo_{K\alpha}$ =0.71073 Å, absorption coefficient 1.056 mm¹, F(000)=1810, 31624 reflections collected, 7713 independent reflections, R_{int} =0.0800, GoF=1.047, R=0.0574 [I>2 $\sigma(I$)], wR2=0.1453 [I>2 $\sigma(I$)]. The crystals of **8** were found to contain co-crystals of complex $C_{44}H_{58}N_3P_2Te_2V$ in a 9:1 ratio. The Te disorder was refined with a set of restraints and constraints.